
Jiachen Zhang, Peng Li, Bo Liu, Trent G. Marbach, Xiaoguang Liu, Gang Wang

Nankai - Baidu Joint Lab, Nankai University, China

Performance	Analysis	of	3D	XPoint	SSDs	
in	Virtualized	and	non-Virtualized	Environments

ICPADS 2018

'5$0
1$1'�
)ODVK

+''

,QWHUIDFHV�

0HPRU\�

8VDJHV�

',00 3&,�H 6$7$

0DLQ�0HPRU\ %ORFN�'HYLFH��6WRUDJH�

Memory and Storage are Separated before …

'5$0
190

��'�;3RLQW�
1$1'�
)ODVK

+''

,QWHUIDFHV�

0HPRU\�

8VDJHV�

',00 3&,�H 6$7$

Memory and Storage are Separated before …

The Non-Volatile Memory
Intel’s Optane DC
Persistent Memory

Intel’s Optane SSD

Not broad available now.

3D XPoint
Non-volatile memory (NVM)

What we focus in this paper.

& non-volatileByte-addressable Byte-addressable Non-volatile

NAND Flash SATA SSD
(Intel S3510)

3D XPoint Optane SSD
(Intel Optane 900P)

Comparison Method

VMVM

Non-Virtualized
Environment
(Linux Host)

Virtualized
Environment
(QEMU VM)

• Impacts of Storage Stacks

• Micro-benchmarks

• Impacts on Storage Systems

• Tests in Database (MySQL)

Agenda

Application layer
(like fio, MySQL …)

File system layers

Block I/O layers

Device Driver & Hardware

Virtualization layers

File system layers

Block I/O layers

Application layer
(like fio, MySQL …)

File system layers

Block I/O layers

Device Driver & Hardware

Operating system’s storage stack is complex.
• I/O requests	will	go through application, file

system layers, block I/O layers, device driver
and hardware.

I/O path in virtualized environments is doubled.
• Virtual machine hypervisors (like QEMU)

introduce many I/O virtualization layers.
• Guest OS also introduces filesystem and

block I/O layers.

Storage Stack is Complex

I/O Layers
Introduced by
virtualization

Application layer
(like fio, MySQL …)

File system layers

Block I/O layers

Device Driver & Hardware

Virtualization layers

File system layers

Block I/O layers

Application layer
(like fio, MySQL …)

Storage Stack is Complex

Latency breakdown: (Test env. : Fio 4K read, ext4, Linux, QEMU)

Virtualization
I/O layers

For Optane SSD:
• Hardware latency no longer dominate. (blue part)

• Overhead of virtualization layers is the largest. (dotted box)

Application layer
(like fio, MySQL …)

File system layers

Block I/O layers

Device Driver & Hardware

Virtualization layers

File system layers

Block I/O layers

Application layer
(like fio, MySQL …)

Storage Stack is Complex

Stop sleeping, hardware is catching up!

Virtualization
I/O layers

Hardware Storage Devices

Software Storage Stack

• Impacts of Storage Stacks

• Micro-benchmarks
• Latency
• Bandwidth
• IOPS

• Impacts on Storage Systems

• Tests in Database (MySQL)

Agenda

36.1

13.8
2.4

32.8
15.8

3.2

124.7

13.7
3.1

47.4

15.7
3.5

0

50

100

150

NAND Optane RAMDISK

μs

Read-seq Write-seq Read-rand Write-rand

(a) Latency (b) Bandwidth (c) IOPS

Fig. 4: Micro-benchmarks of NAND, Optane and RAMDISK in general Linux environment (PE).

(a) Latency (b) Bandwidth (c) IOPS

Fig. 5: Micro-benchmarks of NAND, Optane and RAMDISK in virtualized QEMU environment (VE).

stacks in the PE, which will reduce the request latency in both
PE and VE.

III. BASIC METRICS

In this section, we show how Optane behaves regarding the
basic metrics of latency, IOPS and bandwidth by making com-
parisons with two kinds of devices, NAND and RAMDISK, in
both the PE and VE. The detailed information of these devices
is listed in Table I. Optane is a PCIe-attached device using
3D XPoint technology, while NAND is a traditional SATA-
attached device based on NAND flash, and RAMDISK is an
emulated device using DRAM.

We further explore the performance curve between latency
and IOPS in Section III-C, and present a summary.

TABLE I: Hardware devices.

NAND Optane RAMDISK

Device Model Intel S3510 Intel Optane 900P Micron DDR4
Interface SATA 3.0 PCIe 3.0 ⇥4 DIMM

Memory Medium NAND flash 3D XPoint DRAM
Capacity 480 GB 480 GB 64 GB

Dollars per GB 0.68 1.16 13.13

A. Experimental Setup

We use fio to perform the tests by generating an appro-
priate number of read or write threads with an appropriate I/O
request sizes, which will be detailed in Section III-B.

All the experiments are conducted on an X86 server, with
configuration information listed in Table II. For the PE, all

TABLE II: Server Configurations.

CPU Intel Xeon E5-2609 1.70 GHz ⇥2
CPU cores 8 ⇥2
Processor cache 32 KB L1i, 32 KB L1d, 256 KB L2, 20 MB L3
DRAM 128 GB
OS RHEL 7.0, kernel version 4.14 (same in VMs)
VMM QEMU 2.10
File system XFS

devices are formatted with XFS file system. For the VE, we
create raw format image files on both Optane and NAND
devices as the backends of the VM storage. The RAMDISK
is created directly in the VM by a guest OS, as memory
virtualization is more efficient than storage I/O virtualization
(due to the prolonged VE I/O path). Note that in the VE,
the additional overheads of RAMDISK are mainly caused by
memory virtualization rather than the additional storage stack
layers. We also format these devices with XFS in the VE.

For all experiments, each result is averaged over a 30s
execution and the size of the data stored in the drive is
maintained at 20 GB (originally set randomly).

B. Latency, Bandwidth and IOPS

a) I/O Latency: To measure the averaged latency of an
I/O request, we run fio in single thread mode and generate
4 KB requests one at a time.

The results of the PE and VE latency experiments are shown
in Fig. 4 (a) and Fig. 5 (a) respectively. We use Read-seq and
Write-seq to denote the sequential read and write tests, and

Optane in host:
• Write is as fast as read.
• Random is as fast as sequential.(a) Latency (b) Bandwidth (c) IOPS

Fig. 4: Micro-benchmarks of NAND, Optane and RAMDISK in general Linux environment (PE).

97.4
69.8

4.0

91.6
72.1

4.9

226.1

68.1

4.5

126.6

79.7

5.4
0

50

100

150

200

250

NAND Optane RAMDISK

μs

Read-seq Write-seq Read-rand Write-rand

(a) Latency (b) Bandwidth (c) IOPS

Fig. 5: Micro-benchmarks of NAND, Optane and RAMDISK in virtualized QEMU environment (VE).

stacks in the PE, which will reduce the request latency in both
PE and VE.

III. BASIC METRICS

In this section, we show how Optane behaves regarding the
basic metrics of latency, IOPS and bandwidth by making com-
parisons with two kinds of devices, NAND and RAMDISK, in
both the PE and VE. The detailed information of these devices
is listed in Table I. Optane is a PCIe-attached device using
3D XPoint technology, while NAND is a traditional SATA-
attached device based on NAND flash, and RAMDISK is an
emulated device using DRAM.

We further explore the performance curve between latency
and IOPS in Section III-C, and present a summary.

TABLE I: Hardware devices.

NAND Optane RAMDISK

Device Model Intel S3510 Intel Optane 900P Micron DDR4
Interface SATA 3.0 PCIe 3.0 ⇥4 DIMM

Memory Medium NAND flash 3D XPoint DRAM
Capacity 480 GB 480 GB 64 GB

Dollars per GB 0.68 1.16 13.13

A. Experimental Setup

We use fio to perform the tests by generating an appro-
priate number of read or write threads with an appropriate I/O
request sizes, which will be detailed in Section III-B.

All the experiments are conducted on an X86 server, with
configuration information listed in Table II. For the PE, all

TABLE II: Server Configurations.

CPU Intel Xeon E5-2609 1.70 GHz ⇥2
CPU cores 8 ⇥2
Processor cache 32 KB L1i, 32 KB L1d, 256 KB L2, 20 MB L3
DRAM 128 GB
OS RHEL 7.0, kernel version 4.14 (same in VMs)
VMM QEMU 2.10
File system XFS

devices are formatted with XFS file system. For the VE, we
create raw format image files on both Optane and NAND
devices as the backends of the VM storage. The RAMDISK
is created directly in the VM by a guest OS, as memory
virtualization is more efficient than storage I/O virtualization
(due to the prolonged VE I/O path). Note that in the VE,
the additional overheads of RAMDISK are mainly caused by
memory virtualization rather than the additional storage stack
layers. We also format these devices with XFS in the VE.

For all experiments, each result is averaged over a 30s
execution and the size of the data stored in the drive is
maintained at 20 GB (originally set randomly).

B. Latency, Bandwidth and IOPS

a) I/O Latency: To measure the averaged latency of an
I/O request, we run fio in single thread mode and generate
4 KB requests one at a time.

The results of the PE and VE latency experiments are shown
in Fig. 4 (a) and Fig. 5 (a) respectively. We use Read-seq and
Write-seq to denote the sequential read and write tests, and

Optane in virtualized env.:
• Write is as fast as read.
• Random is as fast as sequential.
• Performance significantly drops.

Micro-benchmarks --- Latency

Optane is better for latency-sensitive
workload in non-virtualized environment.

Optane’s bandwidth is about 5 times better than NAND.

Virtualized environment’s bandwidth performance is good.

(a) Latency

542

2557

44111

412

2185

40241

NAND Optane RAMDISK

M
B/
s

Read Write

1000

0

2000

3000

40000

50000

(b) Bandwidth (c) IOPS

Fig. 4: Micro-benchmarks of NAND, Optane and RAMDISK in general Linux environment (PE).

(a) Latency (b) Bandwidth (c) IOPS

Fig. 5: Micro-benchmarks of NAND, Optane and RAMDISK in virtualized QEMU environment (VE).

stacks in the PE, which will reduce the request latency in both
PE and VE.

III. BASIC METRICS

In this section, we show how Optane behaves regarding the
basic metrics of latency, IOPS and bandwidth by making com-
parisons with two kinds of devices, NAND and RAMDISK, in
both the PE and VE. The detailed information of these devices
is listed in Table I. Optane is a PCIe-attached device using
3D XPoint technology, while NAND is a traditional SATA-
attached device based on NAND flash, and RAMDISK is an
emulated device using DRAM.

We further explore the performance curve between latency
and IOPS in Section III-C, and present a summary.

TABLE I: Hardware devices.

NAND Optane RAMDISK

Device Model Intel S3510 Intel Optane 900P Micron DDR4
Interface SATA 3.0 PCIe 3.0 ⇥4 DIMM

Memory Medium NAND flash 3D XPoint DRAM
Capacity 480 GB 480 GB 64 GB

Dollars per GB 0.68 1.16 13.13

A. Experimental Setup

We use fio to perform the tests by generating an appro-
priate number of read or write threads with an appropriate I/O
request sizes, which will be detailed in Section III-B.

All the experiments are conducted on an X86 server, with
configuration information listed in Table II. For the PE, all

TABLE II: Server Configurations.

CPU Intel Xeon E5-2609 1.70 GHz ⇥2
CPU cores 8 ⇥2
Processor cache 32 KB L1i, 32 KB L1d, 256 KB L2, 20 MB L3
DRAM 128 GB
OS RHEL 7.0, kernel version 4.14 (same in VMs)
VMM QEMU 2.10
File system XFS

devices are formatted with XFS file system. For the VE, we
create raw format image files on both Optane and NAND
devices as the backends of the VM storage. The RAMDISK
is created directly in the VM by a guest OS, as memory
virtualization is more efficient than storage I/O virtualization
(due to the prolonged VE I/O path). Note that in the VE,
the additional overheads of RAMDISK are mainly caused by
memory virtualization rather than the additional storage stack
layers. We also format these devices with XFS in the VE.

For all experiments, each result is averaged over a 30s
execution and the size of the data stored in the drive is
maintained at 20 GB (originally set randomly).

B. Latency, Bandwidth and IOPS

a) I/O Latency: To measure the averaged latency of an
I/O request, we run fio in single thread mode and generate
4 KB requests one at a time.

The results of the PE and VE latency experiments are shown
in Fig. 4 (a) and Fig. 5 (a) respectively. We use Read-seq and
Write-seq to denote the sequential read and write tests, and

(a) Latency (b) Bandwidth (c) IOPS

Fig. 4: Micro-benchmarks of NAND, Optane and RAMDISK in general Linux environment (PE).

(a) Latency

474

2541

43333

440

2174

32495

NAND Optane RAM DISK

M
B/

s

Read Write50000

40000

3000

2000

1000

0

(b) Bandwidth (c) IOPS

Fig. 5: Micro-benchmarks of NAND, Optane and RAMDISK in virtualized QEMU environment (VE).

stacks in the PE, which will reduce the request latency in both
PE and VE.

III. BASIC METRICS

In this section, we show how Optane behaves regarding the
basic metrics of latency, IOPS and bandwidth by making com-
parisons with two kinds of devices, NAND and RAMDISK, in
both the PE and VE. The detailed information of these devices
is listed in Table I. Optane is a PCIe-attached device using
3D XPoint technology, while NAND is a traditional SATA-
attached device based on NAND flash, and RAMDISK is an
emulated device using DRAM.

We further explore the performance curve between latency
and IOPS in Section III-C, and present a summary.

TABLE I: Hardware devices.

NAND Optane RAMDISK

Device Model Intel S3510 Intel Optane 900P Micron DDR4
Interface SATA 3.0 PCIe 3.0 ⇥4 DIMM

Memory Medium NAND flash 3D XPoint DRAM
Capacity 480 GB 480 GB 64 GB

Dollars per GB 0.68 1.16 13.13

A. Experimental Setup

We use fio to perform the tests by generating an appro-
priate number of read or write threads with an appropriate I/O
request sizes, which will be detailed in Section III-B.

All the experiments are conducted on an X86 server, with
configuration information listed in Table II. For the PE, all

TABLE II: Server Configurations.

CPU Intel Xeon E5-2609 1.70 GHz ⇥2
CPU cores 8 ⇥2
Processor cache 32 KB L1i, 32 KB L1d, 256 KB L2, 20 MB L3
DRAM 128 GB
OS RHEL 7.0, kernel version 4.14 (same in VMs)
VMM QEMU 2.10
File system XFS

devices are formatted with XFS file system. For the VE, we
create raw format image files on both Optane and NAND
devices as the backends of the VM storage. The RAMDISK
is created directly in the VM by a guest OS, as memory
virtualization is more efficient than storage I/O virtualization
(due to the prolonged VE I/O path). Note that in the VE,
the additional overheads of RAMDISK are mainly caused by
memory virtualization rather than the additional storage stack
layers. We also format these devices with XFS in the VE.

For all experiments, each result is averaged over a 30s
execution and the size of the data stored in the drive is
maintained at 20 GB (originally set randomly).

B. Latency, Bandwidth and IOPS

a) I/O Latency: To measure the averaged latency of an
I/O request, we run fio in single thread mode and generate
4 KB requests one at a time.

The results of the PE and VE latency experiments are shown
in Fig. 4 (a) and Fig. 5 (a) respectively. We use Read-seq and
Write-seq to denote the sequential read and write tests, and

Micro-benchmarks --- Bandwidth

Optane is better for high I/O off-line tasks in both environments.

Optane is better for high concurrency
workload in non-virtualized environment.

For Optane:
• No gap between read and write.
• Bad IOPS performance in virtualized env.

(a) Latency (b) Bandwidth

70

583

2283

40

558

975

NAND Optane RAMDISK

IO
PS

(×
10
00
)

Read Write2400

1000

800

600

400

200

0

(c) IOPS

Fig. 4: Micro-benchmarks of NAND, Optane and RAMDISK in general Linux environment (PE).

(a) Latency (b) Bandwidth (c) IOPS

Fig. 5: Micro-benchmarks of NAND, Optane and RAMDISK in virtualized QEMU environment (VE).

stacks in the PE, which will reduce the request latency in both
PE and VE.

III. BASIC METRICS

In this section, we show how Optane behaves regarding the
basic metrics of latency, IOPS and bandwidth by making com-
parisons with two kinds of devices, NAND and RAMDISK, in
both the PE and VE. The detailed information of these devices
is listed in Table I. Optane is a PCIe-attached device using
3D XPoint technology, while NAND is a traditional SATA-
attached device based on NAND flash, and RAMDISK is an
emulated device using DRAM.

We further explore the performance curve between latency
and IOPS in Section III-C, and present a summary.

TABLE I: Hardware devices.

NAND Optane RAMDISK

Device Model Intel S3510 Intel Optane 900P Micron DDR4
Interface SATA 3.0 PCIe 3.0 ⇥4 DIMM

Memory Medium NAND flash 3D XPoint DRAM
Capacity 480 GB 480 GB 64 GB

Dollars per GB 0.68 1.16 13.13

A. Experimental Setup

We use fio to perform the tests by generating an appro-
priate number of read or write threads with an appropriate I/O
request sizes, which will be detailed in Section III-B.

All the experiments are conducted on an X86 server, with
configuration information listed in Table II. For the PE, all

TABLE II: Server Configurations.

CPU Intel Xeon E5-2609 1.70 GHz ⇥2
CPU cores 8 ⇥2
Processor cache 32 KB L1i, 32 KB L1d, 256 KB L2, 20 MB L3
DRAM 128 GB
OS RHEL 7.0, kernel version 4.14 (same in VMs)
VMM QEMU 2.10
File system XFS

devices are formatted with XFS file system. For the VE, we
create raw format image files on both Optane and NAND
devices as the backends of the VM storage. The RAMDISK
is created directly in the VM by a guest OS, as memory
virtualization is more efficient than storage I/O virtualization
(due to the prolonged VE I/O path). Note that in the VE,
the additional overheads of RAMDISK are mainly caused by
memory virtualization rather than the additional storage stack
layers. We also format these devices with XFS in the VE.

For all experiments, each result is averaged over a 30s
execution and the size of the data stored in the drive is
maintained at 20 GB (originally set randomly).

B. Latency, Bandwidth and IOPS

a) I/O Latency: To measure the averaged latency of an
I/O request, we run fio in single thread mode and generate
4 KB requests one at a time.

The results of the PE and VE latency experiments are shown
in Fig. 4 (a) and Fig. 5 (a) respectively. We use Read-seq and
Write-seq to denote the sequential read and write tests, and

(a) Latency (b) Bandwidth (c) IOPS

Fig. 4: Micro-benchmarks of NAND, Optane and RAMDISK in general Linux environment (PE).

(a) Latency (b) Bandwidth

67

118

2180

39

119

348

NAND Optane RAMDISK

IO
PS

(×
10
00
)

Read Write

200

100

300

2400

0

(c) IOPS

Fig. 5: Micro-benchmarks of NAND, Optane and RAMDISK in virtualized QEMU environment (VE).

stacks in the PE, which will reduce the request latency in both
PE and VE.

III. BASIC METRICS

In this section, we show how Optane behaves regarding the
basic metrics of latency, IOPS and bandwidth by making com-
parisons with two kinds of devices, NAND and RAMDISK, in
both the PE and VE. The detailed information of these devices
is listed in Table I. Optane is a PCIe-attached device using
3D XPoint technology, while NAND is a traditional SATA-
attached device based on NAND flash, and RAMDISK is an
emulated device using DRAM.

We further explore the performance curve between latency
and IOPS in Section III-C, and present a summary.

TABLE I: Hardware devices.

NAND Optane RAMDISK

Device Model Intel S3510 Intel Optane 900P Micron DDR4
Interface SATA 3.0 PCIe 3.0 ⇥4 DIMM

Memory Medium NAND flash 3D XPoint DRAM
Capacity 480 GB 480 GB 64 GB

Dollars per GB 0.68 1.16 13.13

A. Experimental Setup

We use fio to perform the tests by generating an appro-
priate number of read or write threads with an appropriate I/O
request sizes, which will be detailed in Section III-B.

All the experiments are conducted on an X86 server, with
configuration information listed in Table II. For the PE, all

TABLE II: Server Configurations.

CPU Intel Xeon E5-2609 1.70 GHz ⇥2
CPU cores 8 ⇥2
Processor cache 32 KB L1i, 32 KB L1d, 256 KB L2, 20 MB L3
DRAM 128 GB
OS RHEL 7.0, kernel version 4.14 (same in VMs)
VMM QEMU 2.10
File system XFS

devices are formatted with XFS file system. For the VE, we
create raw format image files on both Optane and NAND
devices as the backends of the VM storage. The RAMDISK
is created directly in the VM by a guest OS, as memory
virtualization is more efficient than storage I/O virtualization
(due to the prolonged VE I/O path). Note that in the VE,
the additional overheads of RAMDISK are mainly caused by
memory virtualization rather than the additional storage stack
layers. We also format these devices with XFS in the VE.

For all experiments, each result is averaged over a 30s
execution and the size of the data stored in the drive is
maintained at 20 GB (originally set randomly).

B. Latency, Bandwidth and IOPS

a) I/O Latency: To measure the averaged latency of an
I/O request, we run fio in single thread mode and generate
4 KB requests one at a time.

The results of the PE and VE latency experiments are shown
in Fig. 4 (a) and Fig. 5 (a) respectively. We use Read-seq and
Write-seq to denote the sequential read and write tests, and

Read-rand and Write-rand to denote the random read and write
tests respectively. In the PE, as expected, Optane achieves
lower latencies than NAND, with a reduction of 67.4% on
average for all four request types. Additionally, the latencies
of Optane are more balanced between sequential and random
requests, differing with a factor of at most 12.7%, while there
is a 2 to 3 times difference between the NAND requests1.
In the VE, the latency increases in all situations, however,
Optane’s performance suffers the most from the additional
virtualization layers. For example, on average, the random
read latency of Optane in the VE is 5 times that of it in the
PE, while for NAND, the multiplication factor decreases to 2
times.

RAMDISK is the fastest device in all cases, owing to
the more rapid memory speed obtained by using DRAM.
However, Optane is only 5 times slower than RAMDISK
on average while NAND is 10 to 40 times slower than
RAMDISK. RAMDISK also achieves relatively balanced la-
tencies (e.g., about 3 µs in PE and 5 µs in VE), showing a
similarity between Optane and RAMDISK.

b) Transfer Bandwidth: We calculate the upper bounds
of the I/O throughput (transfer bandwidths) by sending multi-
ple large request units (128 KB) over multiple threads to the
device.

Fig. 4 (b) and Fig. 5 (b) show the bandwidths in the PE
and VE. As can be seen, the bandwidth of Optane is over 2
GB/s, approximately 5 times more than NAND’s bandwidth.
As Optane is connected through PCIe 3.0 ⇥4 interface, whose
theoretical bandwidth is 3.94 GB/s, and NAND is connected
through SATA 3.0, whose theoretical bandwidth is 600 MB/s,
the interfaces do not strongly bound the bandwidths. In the
VE, the longer transfer time of the larger 128 KB units along
with the use of multiple threads act to hide the additional
virtualization latencies.

Although RAMDISK has the best bandwidth between each
of the memory types, the performance boost by using Op-
tane compared with NAND is still meaningful. The higher
bandwidth of Optane indicates it can be used as persistent file
cache in offline workloads such as backup system. Also, higher
bandwidth may change optimization policies of some storage
services like transparent data compression, data deduplication
and erasure coding. We present a more detailed analysis in
Section IV-C by a case study of transparent compression.

c) Maximum IOPS: To measure the maximum IOPS of
each device, we run fio in multi-thread mode (64 threads),
which generates random read and write requests with a small 4
KB I/O size. We calculate the IOPS by averaging the number
of successful requests per seconds. Using small unit size saves
I/O bandwidth; thus we can expect to achieve the highest IOPS
before reaching the hardware transfer bandwidth.

Fig. 4 (c) shows that Optane works significantly better
than NAND in the PE, with an order of magnitude higher

1Theoretically, the write operation of NAND should be more expensive
than the read operations due to the NAND flash write amplification factor
[8], we believe the reason random write is faster than random read here is
due to the write buffering in our device [9].

0

200

400

600

1 2 3 4 5 6 HOST

IO
PS

(×
10

00
)

Number of VMs

Average IOPS of each VM Total IOPS

Fig. 6: Read IOPS of multiple VMs based on one Optane.

IOPS (from 8 to 11 fold increase). The theoretical upper
bound on IOPS for a given parameter setting is given by
its corresponding bandwidth divided by 4096 (the I/O size).
NAND obtains 51.7% and 38.8% of the upper bound for
read and write, Optane obtains 91.2% and 102.15%2, and
RAMDISK obtains 20.7% and 9.7%. It is clear from these
results that large thread and request counts negatively effect
NAND and RAMDISK devices, but do not seem to affect the
Optane device. These results indicate that Optane works well
in a parallel setting.

Besides, there is only a small gap between read and write
operations for Optane but a large gap for NAND. This
indicates that Optane is naturally suitable for different read
and write situations while NAND will perform poorly for
write-intensive systems due to the write amplification factor
of NAND flash. RAMDISK performs best in IOPS with 2 to
4 times higher than Optane, owing to the high parallelism of
the memory bus.

In VE, as shown in Fig. 5 (c), Optane only obtains about
120k IOPSs, one-fifth of that in the PE. In contrast, NAND
gets nearly the same IOPSs as that in the PE. This indicates
in the VE, the parallelism of Optane is still underutilized.

To explore how to make full use of Optane in the VE,
we deploy multiple VMs, which use Optane as there storage
backend. We run fio benchmarks simultaneously in these
VMs and test the accumulated IOPS among all the VMs. The
results are illustrated in Fig. 6, where the blue bar denotes the
total IOPS, and red bar denotes the averaged IOPS. We observe
that although modern VMMs provide inadequate support for
Optane regarding parallelism for a single VM, Optane still can
play a role in VEs when multiple VMs are deployed. As the
number of VMs was increased, the IOPS improved sublinearly
until the number of VMs was 4. When using 6 VMs, the IOPS
is saturated at about 410k IOPS, which is comparable to the
IOPS in the PE (580k). This means that if properly utilized,
Optane can be a promising solution within cloud data centers.

2The reason why this number is slightly larger than 100% is because the
theoretical upper bound we use is also measured in the previous section, and
the measurement error is unavoidable.

A way to use Optane in virtualized
env. better: multiple VMs!

Micro-benchmarks --- 4K IOPS

One VM is bad. Multiple VMs is better.

0

100

200

300

400

500

0 20 40 60 80

La
te
nc
y(
μs
)

IOPS

NAND-PE
NAND-VE

(a) NAND

0

50

100

150

200

0 40 80 120
IOPS

Optane-VE

(b) Optane (VE)

0

4

8

12

16

0 500 1000 1500 2000 2500

La
te
nc
y(
μs
)

IOPS

RAMDISK-PE
RAMDISK-VE

(c) RAMDISK

0

10

20

30

40

50

0 200 400 600
IOPS

Optane-PE

(d) Optane (PE)

Fig. 7: Relationship between IOPS and latency.

C. The Performance Curve (between Latency and IOPS)

To better understand the parallel nature of these devices, we
also test the relationship between IOPS and latency of random
read requests and draw latency curves, see Fig. 7.

As the IOPS rate increases, the device experiences a greater
total demand. The average latencies in the traditional device
gradually become worse as the IOPS increases, whereas the
Optane and RAMDISK devices are more resilient to this
demand. Once the IOPS achieves the upper bounds, the
latencies increase rapidly on all devices [10] [11].

As can be observed in Fig. 7 (a), (c) and (d), as the IOPS
rate achieves 95% of the upper bound, the latencies of NAND,
RAMDISK and Optane has increased by 80%, 54% and
25% from its base levels, respectively. This indicates Optane
internally spends less time addressing the data. As a result,
the latency of Optane can stay optimal in high concurrency
workloads. Moreover, when Optane reaches its IOPS bound
(about 580k), the corresponding throughput is about 2.2 GB/s,
which is very close to its transfer bandwidth (2.5 GB/s). On
the contrary, NAND gets a 280 MB throughput when reaching
its upper bound IOPS of 70k, which is much smaller than
its bandwidth (542 MB/s). Thus, we conclude that Optane
has better parallelism and scalability and does better for high
concurrency workloads. Fig. 7 (a), (b) and (c) show the results
of NAND, Optane and RAMDISK in VE. The performance
of NAND and RAMDISK is only a little worse than that in
the PE, while the performance of Optane drops a lot in the
VE. However, the latency of Optane is still more steady as
the IOPS rate increases. When the IOPS rate achieves 95% of
the upper bounds, latency of NAND, Optane and RAMDISK
increase by 158%, 50% and 35% respectively.

Through these measurements, we believe although Optane
costs twice the price per GB than the NAND device, it is still a

more competitive option than NAND for modern data centers.
On the other hand, compared with NAND, the performance of
Optane drops more in VEs. This indicates to make better use
of Optane in cloud data centers, further research on scheduling
and configuring problems should be performed. However, as
mentioned above, as one VM cannot make full use of the
Optane’s parallelism, using one Optane device for multiple
VMs is more appropriate in cloud data centers presently.

IV. IMPACTS ON STORAGE OPTIMIZATIONS

A. File Cache

File caches are used to bridge the performance gap between
storage devices and main memories. Using DRAM as a file
cache is a common optimization in the storage module of I/O
intensive applications. When using a file cache, the average
read I/O latency can be expressed as follows:

Latency = tI/O ⇥ (1�H) + tload ⇥H (1)

where H denotes the cache hit rate, tI/O denotes the average
latency reading from the disk, and tload denotes the time spent
fetching data from the file cache. Generally, the term tload⇥H

can be omitted as tload is very small compared with tI/O. When
using Optane, file caches are still necessary but less important
as its speed (tI/O) is closer to DRAM (tload). In addition, as
Optane is orders of magnitude faster than HDDs, Optane itself
can be used as a cache between HDDs and main memories
[12].

B. I/O Granularity

In I/O intensive applications like DBMSs and key-value
stores, data is generally organized by fixed-length contiguous
chunks, which we call pages. A page is the smallest unit of
data that is fetched or stored.

Traditionally, when using HDDs, the large seek time tseek
dominates the request response time, which results in a large
page size choice. For example, ZFS [13] by default uses 128
KB. And as a common experience, when using faster devices
like SSDs, a smaller page size will be optimal [14] [15].
However, this experience may be wrong when switching the
device from HDDs and low-end SSDs to Optane, and we
aim to explore the underlying reason through sophisticated
mathematical analysis.

An application serves a query request using 3 steps: (1)
interpreting the request to obtain the corresponding pages that
will be transferred, (2) exchanging the pages between applica-
tion layer and underlying software layers of the storage stack,
and (3) exchanging the data between the bottom software layer
and storage devices. We use Tapp, Tstk and Tdev to denote the
time cost corresponding to the above three steps respectively.
Thus, the total time cost for a request can be described by

T = Tapp + Tstk + Tdev. (2)

Note that in the underlying storage stack, data is organized
in pages too. We use da and ds to be the page size in
the application layer and the underlying storage stack layer
respectively. Practically, for the sake of performance, da is a

Micro-benchmarks --- IOPS-latency Curve

NAND SSD’s curves are flat.

Optane’s curve grows quickly when
achieving the maximum IOPS.

When achieving 95% of maximum IOPSs,
the latency increase:

25% (for Optane),
54% (for RAMDISK),
80% (for SSD).

Optane is also better for high concurrency
& latency-sensitive	workload.

NAND Flash SATA SSD
(Intel S3510)

RAM DISK
(Micron DDR4 emulated)

3D XPoint Optane SSD
(Intel Optane 900P)

Comparison between Devices

Latency ~50 us ~14 us ~3 us

Bandwidth ~500 MB/s ~2500 MB/s ~40000 MB/s

IOPS (4 KB) ~50k ~600k ~2000k

Latency (VM) ~100 us ~70 us ~5 us

Bandwidth (VM) ~450 MB/s ~2500 MB/s ~40000 MB/s

IOPS (4 KB) (VM) ~50k ~100k ~1000k

Dollars per GB 0.625 1.25 8

• Impacts of Storage Stacks

• Micro-benchmarks

• Impacts on Storage Systems
• File Cache
• I/O Granularity
• Data Compression

• Tests in Database (MySQL)

Agenda

File I/O benefits less from DRAM cache when using Optane.

(a) NAND (b) Optane (VE)

(c) RAMDISK (d) Optane (PE)

Fig. 7: Relationship between IOPS and latency.

C. The Performance Curve (between Latency and IOPS)

To better understand the parallel nature of these devices, we
also test the relationship between IOPS and latency of random
read requests and draw latency curves, see Fig. 7.

As the IOPS rate increases, the device experiences a greater
total demand. The average latencies in the traditional device
gradually become worse as the IOPS increases, whereas the
Optane and RAMDISK devices are more resilient to this
demand. Once the IOPS achieves the upper bounds, the
latencies increase rapidly on all devices [10] [11].

As can be observed in Fig. 7 (a), (c) and (d), as the IOPS
rate achieves 95% of the upper bound, the latencies of NAND,
RAMDISK and Optane has increased by 80%, 54% and
25% from its base levels, respectively. This indicates Optane
internally spends less time addressing the data. As a result,
the latency of Optane can stay optimal in high concurrency
workloads. Moreover, when Optane reaches its IOPS bound
(about 580k), the corresponding throughput is about 2.2 GB/s,
which is very close to its transfer bandwidth (2.5 GB/s). On
the contrary, NAND gets a 280 MB throughput when reaching
its upper bound IOPS of 70k, which is much smaller than
its bandwidth (542 MB/s). Thus, we conclude that Optane
has better parallelism and scalability and does better for high
concurrency workloads. Fig. 7 (a), (b) and (c) show the results
of NAND, Optane and RAMDISK in VE. The performance
of NAND and RAMDISK is only a little worse than that in
the PE, while the performance of Optane drops a lot in the
VE. However, the latency of Optane is still more steady as
the IOPS rate increases. When the IOPS rate achieves 95% of
the upper bounds, latency of NAND, Optane and RAMDISK
increase by 158%, 50% and 35% respectively.

Through these measurements, we believe although Optane
costs twice the price per GB than the NAND device, it is still a

more competitive option than NAND for modern data centers.
On the other hand, compared with NAND, the performance of
Optane drops more in VEs. This indicates to make better use
of Optane in cloud data centers, further research on scheduling
and configuring problems should be performed. However, as
mentioned above, as one VM cannot make full use of the
Optane’s parallelism, using one Optane device for multiple
VMs is more appropriate in cloud data centers presently.

IV. IMPACTS ON STORAGE OPTIMIZATIONS

A. File Cache

File caches are used to bridge the performance gap between
storage devices and main memories. Using DRAM as a file
cache is a common optimization in the storage module of I/O
intensive applications. When using a file cache, the average
read I/O latency can be expressed as follows:

Latency = tI/O ⇥ (1�H) + tload ⇥H (1)

where H denotes the cache hit rate, tI/O denotes the average
latency reading from the disk, and tload denotes the time spent
fetching data from the file cache. Generally, the term tload⇥H

can be omitted as tload is very small compared with tI/O. When
using Optane, file caches are still necessary but less important
as its speed (tI/O) is closer to DRAM (tload). In addition, as
Optane is orders of magnitude faster than HDDs, Optane itself
can be used as a cache between HDDs and main memories
[12].

B. I/O Granularity

In I/O intensive applications like DBMSs and key-value
stores, data is generally organized by fixed-length contiguous
chunks, which we call pages. A page is the smallest unit of
data that is fetched or stored.

Traditionally, when using HDDs, the large seek time tseek
dominates the request response time, which results in a large
page size choice. For example, ZFS [13] by default uses 128
KB. And as a common experience, when using faster devices
like SSDs, a smaller page size will be optimal [14] [15].
However, this experience may be wrong when switching the
device from HDDs and low-end SSDs to Optane, and we
aim to explore the underlying reason through sophisticated
mathematical analysis.

An application serves a query request using 3 steps: (1)
interpreting the request to obtain the corresponding pages that
will be transferred, (2) exchanging the pages between applica-
tion layer and underlying software layers of the storage stack,
and (3) exchanging the data between the bottom software layer
and storage devices. We use Tapp, Tstk and Tdev to denote the
time cost corresponding to the above three steps respectively.
Thus, the total time cost for a request can be described by

T = Tapp + Tstk + Tdev. (2)

Note that in the underlying storage stack, data is organized
in pages too. We use da and ds to be the page size in
the application layer and the underlying storage stack layer
respectively. Practically, for the sake of performance, da is a

Impacts on Storage System --- File Cache

Stora(e
Device

File Cac)e
(in DRAM

Storage
System

Cache Hit Rate
H

Cache Miss Rate
(1 - H)

Data
requests

I/O	Devices Read	(MB/s) Write	(MB/s)

NAND Flash	SSD 542 412

Optane SSD 2557 2185

Algorithms Decoding	(MB/s) Encoding	(MB/s)

LZ4 2013 356

Snappy 915 269

Zlib defalte 133 23

Impacts on Storage System --- Data Compression

Storage
 evice

Compression

Storage System

 ata
requests

Data compression will cause great performance degradation.

Impacts on Storage System --- I/O Granularity

 torage
Device

Data
requests

Storage System

fixed size I/O unit

Request data size is arge

Request data size is small:

Common experience:

Faster devices benefit from smaller I/O granularity.

Impacts on Storage System --- I/O Granularity

multiple of ds, indicating that requesting one application page
involves da

ds
underlying storage stack pages. In addition, a total

of d d
da
e application pages will be transferred if the requested

I/O size is d. Thus, we have

Tapp = tappd
d

da
e, (3)

Tstk = tstk
da

ds
d d

da
e, (4)

where tapp and tstk denotes the time cost of a page in the
application layer and the underlying software storage stack.
Let b be the bandwidth of the storage device, and tseek be the
seek time of the storage device, whose value is equal to the
difference between the random latency and sequential latency.
Thus for the third term in (2), we have

Tdev = d d

da
e(tseek +

da

b
). (5)

Applying (3), (4) and (5) into (2), we have the time cost
for a request ri with I/O size di as follows:

T = (tapp + tstk
da

ds
+ tseek +

da

b
)d di
da

e (6)

Applications usually have two types of requests, which can be
called point requests and range requests. Point requests only
involve a data amount much smaller than the page size, and so
d di
da
e will be 1. Range requests involve a large amount of data

that involve many pages, and so d di
da
e is approximately equal to

di
da

. We assume a workload involves N query requests, which
consists of m point requests and n range requests, indexed by
ri (1 i N,N = m + n), whose requested I/O sizes
are represented by D = {d1, d2, . . . , dm, dm+1, . . . , dN}.
Therefore, the total time cost for the given workload can be
expressed by

TD =
mX

i=1

Ti +
NX

i=m+1

Ti

=
mX

i=1

(tapp + tstk
da

ds
+ tseek +

da

b
)

+
NX

i=m+1

(tapp + tstk
da

ds
+ tseek +

da

b
)
di

da
.

(7)

Let d̄ to be the average I/O size of the range requests. Then
we have

TD =m(tapp + tstk
da

ds
+ tseek +

da

b
)

+ n(tapp + tstk
da

ds
+ tseek +

da

b
)
d̄

da

(8)

In (8), we find the derivative of TD of the page size (da)

@TD

@da
= m(

tstk

ds
+

1

b
)�

n(tappd̄+ tseekd̄)

d2a

(9)

and there will be a extreme point of da

da =

s
n(tapp + tseek)d̄

m(tstk/ds + 1/b)
. (10)

Formula 10 gives a way to find the ideal page size, de-
pending on the context of the application. When switching to
the high-end SSDs like Optane, the hardware latency tseek and
1/b is sufficiently small and is comparable with the software
latency. As a result, hardware latency no longer dominates
Formula 10, software factors tapp and tstk (such as application
latency, application workloads, virtualization latency and OS
I/O subsystem latency) will dominate the best choice of page
sizes in equation (10). As software factors are very different
between execution environments and workloads, not only the
experience which tends to choose smaller page size for faster
devices becomes invalid, the best choice will also be much
easier to change. Thus when using Optane, we should not
choose a small page size only based on its low hardware
latency, more workload-related analysis and tests are needed.

C. Storage-orient Computing

Storage-oriented computing tasks like transparent compres-
sion, deduplication and erasure coding, are incorporated into
some I/O intensive applications for space efficiency, high
performance and reliability [16] [17] [18]. These tasks work
in harmony with traditional slower storage devices. However,
when using the new devices like Optane, some of the ad-
vantages may disappear, and they may even lead to poor
performance. We take transparent data compression as an
example.

Data compression has been widely used in I/O intensive
applications such as ZFS [13], NTFS [19] and MySQL [20],
owing to the benefits it provides as follows: (1) less storage
space needed, (2) lower I/O (i.e. disk and network) bandwidth
for data fetching, and (3) higher cache hit rate.

TABLE III: I/O bandwidths and data compression throughputs
(MB/s).

I/O Devices Read Write

NAND 542 412
Optane 2557 2185
Algorithms Decoding Encoding

LZ4 2013 356
Snappy 915 269
zlib deflate 133 23

We list the I/O bandwidth and coding throughput of several
popular lossless compression algorithms in Table III. The
I/O bandwidth is taken from Section III-B, while coding
throughputs are tested by lzbench [21]. The compression
algorithms are tested with the granularity of chunks (128
KB). Traditionally, when using HDDs or NAND devices,
decoding is much faster than I/O reading, which can eliminate
the I/O traffic and benefit the cache capacity, and encoding
will not bottleneck the I/O writing due to the widely used
write buffering. When it comes to Optane, both encoding and
decoding are slower than I/O operations, which indicates that
using data compression may lead to poor performance.

We consider two typical application scenarios where com-
pression may not benefit the system performance when using
Optane: First, compressed data can improve the cache hit rate

tapp Application latency
tstk Storage stack latency

tseek Hardware I/O latency
b Hardware I/O bandwidth

Average range I/O size
da Best app. I/O Granularity
ds OS I/O Granularity

m Point I/O access number
n Range I/O access number

multiple of ds, indicating that requesting one application page
involves da

ds
underlying storage stack pages. In addition, a total

of d d
da
e application pages will be transferred if the requested

I/O size is d. Thus, we have

Tapp = tappd
d

da
e, (3)

Tstk = tstk
da

ds
d d

da
e, (4)

where tapp and tstk denotes the time cost of a page in the
application layer and the underlying software storage stack.
Let b be the bandwidth of the storage device, and tseek be the
seek time of the storage device, whose value is equal to the
difference between the random latency and sequential latency.
Thus for the third term in (2), we have

Tdev = d d

da
e(tseek +

da

b
). (5)

Applying (3), (4) and (5) into (2), we have the time cost
for a request ri with I/O size di as follows:

T = (tapp + tstk
da

ds
+ tseek +

da

b
)d di
da

e (6)

Applications usually have two types of requests, which can be
called point requests and range requests. Point requests only
involve a data amount much smaller than the page size, and so
d di
da
e will be 1. Range requests involve a large amount of data

that involve many pages, and so d di
da
e is approximately equal to

di
da

. We assume a workload involves N query requests, which
consists of m point requests and n range requests, indexed by
ri (1 i N,N = m + n), whose requested I/O sizes
are represented by D = {d1, d2, . . . , dm, dm+1, . . . , dN}.
Therefore, the total time cost for the given workload can be
expressed by

TD =
mX

i=1

Ti +
NX

i=m+1

Ti

=
mX

i=1

(tapp + tstk
da

ds
+ tseek +

da

b
)

+
NX

i=m+1

(tapp + tstk
da

ds
+ tseek +

da

b
)
di

da
.

(7)

Let d̄ to be the average I/O size of the range requests. Then
we have

TD =m(tapp + tstk
da

ds
+ tseek +

da

b
)

+ n(tapp + tstk
da

ds
+ tseek +

da

b
)
d̄

da

(8)

In (8), we find the derivative of TD of the page size (da)

@TD

@da
= m(

tstk

ds
+

1

b
)�

n(tappd̄+ tseekd̄)

d2a

(9)

and there will be a extreme point of da

da =

s
n(tapp + tseek)d̄

m(tstk/ds + 1/b)
. (10)

Formula 10 gives a way to find the ideal page size, de-
pending on the context of the application. When switching to
the high-end SSDs like Optane, the hardware latency tseek and
1/b is sufficiently small and is comparable with the software
latency. As a result, hardware latency no longer dominates
Formula 10, software factors tapp and tstk (such as application
latency, application workloads, virtualization latency and OS
I/O subsystem latency) will dominate the best choice of page
sizes in equation (10). As software factors are very different
between execution environments and workloads, not only the
experience which tends to choose smaller page size for faster
devices becomes invalid, the best choice will also be much
easier to change. Thus when using Optane, we should not
choose a small page size only based on its low hardware
latency, more workload-related analysis and tests are needed.

C. Storage-orient Computing

Storage-oriented computing tasks like transparent compres-
sion, deduplication and erasure coding, are incorporated into
some I/O intensive applications for space efficiency, high
performance and reliability [16] [17] [18]. These tasks work
in harmony with traditional slower storage devices. However,
when using the new devices like Optane, some of the ad-
vantages may disappear, and they may even lead to poor
performance. We take transparent data compression as an
example.

Data compression has been widely used in I/O intensive
applications such as ZFS [13], NTFS [19] and MySQL [20],
owing to the benefits it provides as follows: (1) less storage
space needed, (2) lower I/O (i.e. disk and network) bandwidth
for data fetching, and (3) higher cache hit rate.

TABLE III: I/O bandwidths and data compression throughputs
(MB/s).

I/O Devices Read Write

NAND 542 412
Optane 2557 2185
Algorithms Decoding Encoding

LZ4 2013 356
Snappy 915 269
zlib deflate 133 23

We list the I/O bandwidth and coding throughput of several
popular lossless compression algorithms in Table III. The
I/O bandwidth is taken from Section III-B, while coding
throughputs are tested by lzbench [21]. The compression
algorithms are tested with the granularity of chunks (128
KB). Traditionally, when using HDDs or NAND devices,
decoding is much faster than I/O reading, which can eliminate
the I/O traffic and benefit the cache capacity, and encoding
will not bottleneck the I/O writing due to the widely used
write buffering. When it comes to Optane, both encoding and
decoding are slower than I/O operations, which indicates that
using data compression may lead to poor performance.

We consider two typical application scenarios where com-
pression may not benefit the system performance when using
Optane: First, compressed data can improve the cache hit rate

• For slow devices, tseek and 1/b dominate the best
choice of I/O granularity.

Faster devices benefit from smaller I/O granularity.

 torage
Device

Data
requests

Storage System

fixed size I/O unit

More analysis are needed to chooce the best I/O granularity.

• For high speed Optane, tapp and tstk matters more.

Software

Hardware

Impacts on Storage System --- Suggestions

File I/O benefits less from DRAM cache when using Optane.

More analysis are needed to choose the best I/O
granularity.

Data compression will cause great performance degradation.

• Impacts of Storage Stacks

• Micro-benchmarks

• Impacts on Storage Systems

• Tests in Database (MySQL)
• File Cache
• I/O Granularity
• Transparent Compression

Agenda

Tests	in	Database	(MySQL)	--- Scalability

(Sysbench OLTP benchmark, Gaussian distribution, read)

Host VM

0

2000

4000

6000

1 2 4 8 16 32 64

TP
S

Number of Threads

Optane NAND

(a) Read-only (b) Write-only (c) Mixed read and write

Fig. 10: MySQL OLTP performance using various thread number in PE.

(a) Read-only (b) Write-only (c) Mixed read and write

Fig. 11: MySQL OLTP performance using various thread number in VE.

We list the best page sizes in Table IV. For example, in
Table IV, the best page size of the read-only situation is 16
KB for Optane and 8 KB for NAND in both environments,
and in the VE the best page of Optane is smaller than that
in the PE. As the Optane outperforms the NAND device, and
Optane in the PE outperforms it in the VE, both examples of
the results are in violation of the early experience. Thus when
configuring MySQL equipped with Optane, tests or detailed
analysis based on real-world workloads are needed to find the
best page size.

B. Scalability

A common situation is where a MySQL server is con-
nected to multiple clients simultaneously. In this situation, the
requests are concurrently submitted to the InnoDB storage
engine. Thus, we simulate this situation by using multiple
threads benchmark provided by Sysbench. The results in the
PE and the VE are shown in Fig. 10 and Fig. 11 respectively.

Using Optane can get better TPSs in all situation, as
expected. As shown in Fig.10 (a), when only one thread
connected, the TPS of Optane is only 2.6⇥ higher than
NAND. When the thread number is 64, the TPS of Optane is
3.8⇥ higher than NAND. For the write-only case and mixed
read&write-case in Fig.10 (b) and (c), Optane gets better
scalability when the thread number is smaller than 8. We
also believe the good scalability of NAND is because of the
write buffering in our NAND hardware, as explained in Sec-

tion III. Thus, we conclude that Optane has better scalability
in MySQL workloads, especially for read workloads.

Similar to previous tests, Optane does much worse in the
VE due to the large overheads of the virtualization layers.
As mentioned in Section III, although one VM cannot take
full advantages of the parallelism of Optane, we can use
multiple VMs with MySQL running on them, to get overall
higher scalability. This situation is also more common in cloud
computing services such as Database as a Service (DBaaS).

C. Cache Size

As mentioned, file cache is commonly used to bridge the
performance gap between storage levels. However, as the
performance gap between DRAM and Optane is smaller,
using DRAM as the cache of Optane will benefit less than
when using it with NAND or HDDs. The file cache of
MySQL InnoDB is called the buffer pool, and we configure
it between 3% to 50% of the size of the data , use Gaussian
distribution and mixed read&write access pattern to test the
OLTP performance.

The results in the PE and the VE are shown in Fig. 12 (a)
and Fig. 13 (a) respectively. Transfering from 3% data cached
to 50% data cached resulted with Optane in the PE increasing
its TPS 1.4-fold, NAND in the PE increased 1.9-fold, Optane
in the VE increased 1.3-fold, and NAND in the VE increased
1.5-fold. Therefore, the cache is more important for slower
NAND both in the VE and in the PE.

(a) Read-only (b) Write-only (c) Mixed read and write

Fig. 10: MySQL OLTP performance using various thread number in PE.

0

2000

4000

6000

1 2 4 8 16 32 64

TP
S

Number of Threads

Optane NAND

(a) Read-only (b) Write-only (c) Mixed read and write

Fig. 11: MySQL OLTP performance using various thread number in VE.

We list the best page sizes in Table IV. For example, in
Table IV, the best page size of the read-only situation is 16
KB for Optane and 8 KB for NAND in both environments,
and in the VE the best page of Optane is smaller than that
in the PE. As the Optane outperforms the NAND device, and
Optane in the PE outperforms it in the VE, both examples of
the results are in violation of the early experience. Thus when
configuring MySQL equipped with Optane, tests or detailed
analysis based on real-world workloads are needed to find the
best page size.

B. Scalability

A common situation is where a MySQL server is con-
nected to multiple clients simultaneously. In this situation, the
requests are concurrently submitted to the InnoDB storage
engine. Thus, we simulate this situation by using multiple
threads benchmark provided by Sysbench. The results in the
PE and the VE are shown in Fig. 10 and Fig. 11 respectively.

Using Optane can get better TPSs in all situation, as
expected. As shown in Fig.10 (a), when only one thread
connected, the TPS of Optane is only 2.6⇥ higher than
NAND. When the thread number is 64, the TPS of Optane is
3.8⇥ higher than NAND. For the write-only case and mixed
read&write-case in Fig.10 (b) and (c), Optane gets better
scalability when the thread number is smaller than 8. We
also believe the good scalability of NAND is because of the
write buffering in our NAND hardware, as explained in Sec-

tion III. Thus, we conclude that Optane has better scalability
in MySQL workloads, especially for read workloads.

Similar to previous tests, Optane does much worse in the
VE due to the large overheads of the virtualization layers.
As mentioned in Section III, although one VM cannot take
full advantages of the parallelism of Optane, we can use
multiple VMs with MySQL running on them, to get overall
higher scalability. This situation is also more common in cloud
computing services such as Database as a Service (DBaaS).

C. Cache Size

As mentioned, file cache is commonly used to bridge the
performance gap between storage levels. However, as the
performance gap between DRAM and Optane is smaller,
using DRAM as the cache of Optane will benefit less than
when using it with NAND or HDDs. The file cache of
MySQL InnoDB is called the buffer pool, and we configure
it between 3% to 50% of the size of the data , use Gaussian
distribution and mixed read&write access pattern to test the
OLTP performance.

The results in the PE and the VE are shown in Fig. 12 (a)
and Fig. 13 (a) respectively. Transfering from 3% data cached
to 50% data cached resulted with Optane in the PE increasing
its TPS 1.4-fold, NAND in the PE increased 1.9-fold, Optane
in the VE increased 1.3-fold, and NAND in the VE increased
1.5-fold. Therefore, the cache is more important for slower
NAND both in the VE and in the PE.

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 12: MySQL OLTP performance using various cache size in PE.

0

500

1000

1500

2000

3% 5% 10% 20% 30% 50%
TP
S

Cache size /Data size

Optane NAND

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 13: MySQL OLTP performance using various cache size in VE.

D. Table Compression

We discussed the transparent compression for I/O intensive
applications in Section IV. Many database storage engines,
including MySQL InnoDB, have a compression feature [23]
[24]. The MySQL InnoDB supported page-level compression
is called table compression. When it is enabled, InnoDB
will try compressing each page into a smaller page, such
as compressing the 16 KB pages into 4 KB pages. The
compressed pages will be stored in files or cached in the buffer
pool.

Performance boosting caused by compression can only
happen when using slow HDDs, and the purpose of using
table compression in SSDs is only to save storage space.
As displayed in Fig. 12 (b)(c) and Fig. 13 (b)(c), we set
the compressed page size 8 KB and 4 KB, and test the
OLTP performance when cache size increases in PE and VE.
Compared with the uncompressed situation in Fig.12 (a) and
Fig. 13 (a), using table compression feature slightly decreases
the performance of NAND equipped with MySQL, while the
decrease of Optane equipped with MySQL is significant.

Therefore, in MySQL InnoDB, configuring the table com-
pression feature is a trade-off between storage space saving
and the performance for Optane and NAND in the PE. In the
VE, using compression is so costly that Optanes performance
drops to NAND levels.

VI. RELATED WORK

Many research works have evaluated the performance of
emerging SSDs. Xu et al. [25] conducted the first in-depth
performance analysis of NVMe drives, comparing HDDs,
SATA SSDs and NVMe SSDs. Son et al. [15] evaluated the
performance of NVMe SSDs in the context of Linux file sys-
tems and database workloads, making comparisons between
NVMe SSDs and SATA SSDs. Hady et al. [12] introduced
3D XPoint technology and evaluated its performance using
Optane, focusing mainly on the usages of 3D XPoint based
devices. Wu et al. [26] evaluated Optane high-performance
computing (HPC) applications, making comparisons between
Optane and HDDs. We, in this paper, are more interested in
the contrast between NAND flash-based SATA SSDs and 3D
XPoint based Optane SSDs. We think the comparison between
a SATA SSD and a PCIe 3D XPoint SSD is meaningful
because SATA connected SSDs are still widely used today
in many data centers, and the NVMe protocol for the PCIe
interface is becoming increasingly popular.

As cloud computing continues to develop and storage de-
vices are becoming faster, work has been done to optimize
the storage stack of VMMs. QEMU used to only support
one I/O thread to serve all VM I/O requests, thus causing
an I/O scalability problems. Later, this was improved by the
virtio-blk-dataplane feature which makes use of a dedicated
I/O thread for each device [27]. But as the NVMe SSDs came

0

500

1000

1500

2000

2500

3% 5% 10% 20% 30% 50%

TP
S

Cache size /Data size

Optane NAND

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 12: MySQL OLTP performance using various cache size in PE.

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 13: MySQL OLTP performance using various cache size in VE.

D. Table Compression

We discussed the transparent compression for I/O intensive
applications in Section IV. Many database storage engines,
including MySQL InnoDB, have a compression feature [23]
[24]. The MySQL InnoDB supported page-level compression
is called table compression. When it is enabled, InnoDB
will try compressing each page into a smaller page, such
as compressing the 16 KB pages into 4 KB pages. The
compressed pages will be stored in files or cached in the buffer
pool.

Performance boosting caused by compression can only
happen when using slow HDDs, and the purpose of using
table compression in SSDs is only to save storage space.
As displayed in Fig. 12 (b)(c) and Fig. 13 (b)(c), we set
the compressed page size 8 KB and 4 KB, and test the
OLTP performance when cache size increases in PE and VE.
Compared with the uncompressed situation in Fig.12 (a) and
Fig. 13 (a), using table compression feature slightly decreases
the performance of NAND equipped with MySQL, while the
decrease of Optane equipped with MySQL is significant.

Therefore, in MySQL InnoDB, configuring the table com-
pression feature is a trade-off between storage space saving
and the performance for Optane and NAND in the PE. In the
VE, using compression is so costly that Optanes performance
drops to NAND levels.

VI. RELATED WORK

Many research works have evaluated the performance of
emerging SSDs. Xu et al. [25] conducted the first in-depth
performance analysis of NVMe drives, comparing HDDs,
SATA SSDs and NVMe SSDs. Son et al. [15] evaluated the
performance of NVMe SSDs in the context of Linux file sys-
tems and database workloads, making comparisons between
NVMe SSDs and SATA SSDs. Hady et al. [12] introduced
3D XPoint technology and evaluated its performance using
Optane, focusing mainly on the usages of 3D XPoint based
devices. Wu et al. [26] evaluated Optane high-performance
computing (HPC) applications, making comparisons between
Optane and HDDs. We, in this paper, are more interested in
the contrast between NAND flash-based SATA SSDs and 3D
XPoint based Optane SSDs. We think the comparison between
a SATA SSD and a PCIe 3D XPoint SSD is meaningful
because SATA connected SSDs are still widely used today
in many data centers, and the NVMe protocol for the PCIe
interface is becoming increasingly popular.

As cloud computing continues to develop and storage de-
vices are becoming faster, work has been done to optimize
the storage stack of VMMs. QEMU used to only support
one I/O thread to serve all VM I/O requests, thus causing
an I/O scalability problems. Later, this was improved by the
virtio-blk-dataplane feature which makes use of a dedicated
I/O thread for each device [27]. But as the NVMe SSDs came

Cache - Data ratio 3% -> 50%
TPS improvement:

NAND : 90%
Optane : 40%

Cache - Data ratio 3% -> 50%
TPS improvement:

NAND : 40%
Optane : 30%

Tests	in	Database	(MySQL)	--- File Cache

Host VM

(Sysbench OLTP benchmark, Gaussian distribution, r/w:)

File I/O benefits less from DRAM cache when using Optane.

Tests	in	Database	(MySQL)	--- Compression

0

500

1000

1500

2000

2500

3% 5% 10% 20% 30% 50%

TP
S

Cache size /Data size

Optane NAND

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 12: MySQL OLTP performance using various cache size in PE.

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 13: MySQL OLTP performance using various cache size in VE.

D. Table Compression

We discussed the transparent compression for I/O intensive
applications in Section IV. Many database storage engines,
including MySQL InnoDB, have a compression feature [23]
[24]. The MySQL InnoDB supported page-level compression
is called table compression. When it is enabled, InnoDB
will try compressing each page into a smaller page, such
as compressing the 16 KB pages into 4 KB pages. The
compressed pages will be stored in files or cached in the buffer
pool.

Performance boosting caused by compression can only
happen when using slow HDDs, and the purpose of using
table compression in SSDs is only to save storage space.
As displayed in Fig. 12 (b)(c) and Fig. 13 (b)(c), we set
the compressed page size 8 KB and 4 KB, and test the
OLTP performance when cache size increases in PE and VE.
Compared with the uncompressed situation in Fig.12 (a) and
Fig. 13 (a), using table compression feature slightly decreases
the performance of NAND equipped with MySQL, while the
decrease of Optane equipped with MySQL is significant.

Therefore, in MySQL InnoDB, configuring the table com-
pression feature is a trade-off between storage space saving
and the performance for Optane and NAND in the PE. In the
VE, using compression is so costly that Optanes performance
drops to NAND levels.

VI. RELATED WORK

Many research works have evaluated the performance of
emerging SSDs. Xu et al. [25] conducted the first in-depth
performance analysis of NVMe drives, comparing HDDs,
SATA SSDs and NVMe SSDs. Son et al. [15] evaluated the
performance of NVMe SSDs in the context of Linux file sys-
tems and database workloads, making comparisons between
NVMe SSDs and SATA SSDs. Hady et al. [12] introduced
3D XPoint technology and evaluated its performance using
Optane, focusing mainly on the usages of 3D XPoint based
devices. Wu et al. [26] evaluated Optane high-performance
computing (HPC) applications, making comparisons between
Optane and HDDs. We, in this paper, are more interested in
the contrast between NAND flash-based SATA SSDs and 3D
XPoint based Optane SSDs. We think the comparison between
a SATA SSD and a PCIe 3D XPoint SSD is meaningful
because SATA connected SSDs are still widely used today
in many data centers, and the NVMe protocol for the PCIe
interface is becoming increasingly popular.

As cloud computing continues to develop and storage de-
vices are becoming faster, work has been done to optimize
the storage stack of VMMs. QEMU used to only support
one I/O thread to serve all VM I/O requests, thus causing
an I/O scalability problems. Later, this was improved by the
virtio-blk-dataplane feature which makes use of a dedicated
I/O thread for each device [27]. But as the NVMe SSDs came

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 12: MySQL OLTP performance using various cache size in PE.

0

500

1000

1500

2000

3% 5% 10% 20% 30% 50%

TP
S

Cache size /Data size

Optane NAND

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 13: MySQL OLTP performance using various cache size in VE.

D. Table Compression

We discussed the transparent compression for I/O intensive
applications in Section IV. Many database storage engines,
including MySQL InnoDB, have a compression feature [23]
[24]. The MySQL InnoDB supported page-level compression
is called table compression. When it is enabled, InnoDB
will try compressing each page into a smaller page, such
as compressing the 16 KB pages into 4 KB pages. The
compressed pages will be stored in files or cached in the buffer
pool.

Performance boosting caused by compression can only
happen when using slow HDDs, and the purpose of using
table compression in SSDs is only to save storage space.
As displayed in Fig. 12 (b)(c) and Fig. 13 (b)(c), we set
the compressed page size 8 KB and 4 KB, and test the
OLTP performance when cache size increases in PE and VE.
Compared with the uncompressed situation in Fig.12 (a) and
Fig. 13 (a), using table compression feature slightly decreases
the performance of NAND equipped with MySQL, while the
decrease of Optane equipped with MySQL is significant.

Therefore, in MySQL InnoDB, configuring the table com-
pression feature is a trade-off between storage space saving
and the performance for Optane and NAND in the PE. In the
VE, using compression is so costly that Optanes performance
drops to NAND levels.

VI. RELATED WORK

Many research works have evaluated the performance of
emerging SSDs. Xu et al. [25] conducted the first in-depth
performance analysis of NVMe drives, comparing HDDs,
SATA SSDs and NVMe SSDs. Son et al. [15] evaluated the
performance of NVMe SSDs in the context of Linux file sys-
tems and database workloads, making comparisons between
NVMe SSDs and SATA SSDs. Hady et al. [12] introduced
3D XPoint technology and evaluated its performance using
Optane, focusing mainly on the usages of 3D XPoint based
devices. Wu et al. [26] evaluated Optane high-performance
computing (HPC) applications, making comparisons between
Optane and HDDs. We, in this paper, are more interested in
the contrast between NAND flash-based SATA SSDs and 3D
XPoint based Optane SSDs. We think the comparison between
a SATA SSD and a PCIe 3D XPoint SSD is meaningful
because SATA connected SSDs are still widely used today
in many data centers, and the NVMe protocol for the PCIe
interface is becoming increasingly popular.

As cloud computing continues to develop and storage de-
vices are becoming faster, work has been done to optimize
the storage stack of VMMs. QEMU used to only support
one I/O thread to serve all VM I/O requests, thus causing
an I/O scalability problems. Later, this was improved by the
virtio-blk-dataplane feature which makes use of a dedicated
I/O thread for each device [27]. But as the NVMe SSDs came

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

0

500

1000

1500

2000

2500

3% 5% 10% 20% 30% 50%
Cache size / Data size

Optane NAND

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 12: MySQL OLTP performance using various cache size in PE.

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 13: MySQL OLTP performance using various cache size in VE.

D. Table Compression

We discussed the transparent compression for I/O intensive
applications in Section IV. Many database storage engines,
including MySQL InnoDB, have a compression feature [23]
[24]. The MySQL InnoDB supported page-level compression
is called table compression. When it is enabled, InnoDB
will try compressing each page into a smaller page, such
as compressing the 16 KB pages into 4 KB pages. The
compressed pages will be stored in files or cached in the buffer
pool.

Performance boosting caused by compression can only
happen when using slow HDDs, and the purpose of using
table compression in SSDs is only to save storage space.
As displayed in Fig. 12 (b)(c) and Fig. 13 (b)(c), we set
the compressed page size 8 KB and 4 KB, and test the
OLTP performance when cache size increases in PE and VE.
Compared with the uncompressed situation in Fig.12 (a) and
Fig. 13 (a), using table compression feature slightly decreases
the performance of NAND equipped with MySQL, while the
decrease of Optane equipped with MySQL is significant.

Therefore, in MySQL InnoDB, configuring the table com-
pression feature is a trade-off between storage space saving
and the performance for Optane and NAND in the PE. In the
VE, using compression is so costly that Optanes performance
drops to NAND levels.

VI. RELATED WORK

Many research works have evaluated the performance of
emerging SSDs. Xu et al. [25] conducted the first in-depth
performance analysis of NVMe drives, comparing HDDs,
SATA SSDs and NVMe SSDs. Son et al. [15] evaluated the
performance of NVMe SSDs in the context of Linux file sys-
tems and database workloads, making comparisons between
NVMe SSDs and SATA SSDs. Hady et al. [12] introduced
3D XPoint technology and evaluated its performance using
Optane, focusing mainly on the usages of 3D XPoint based
devices. Wu et al. [26] evaluated Optane high-performance
computing (HPC) applications, making comparisons between
Optane and HDDs. We, in this paper, are more interested in
the contrast between NAND flash-based SATA SSDs and 3D
XPoint based Optane SSDs. We think the comparison between
a SATA SSD and a PCIe 3D XPoint SSD is meaningful
because SATA connected SSDs are still widely used today
in many data centers, and the NVMe protocol for the PCIe
interface is becoming increasingly popular.

As cloud computing continues to develop and storage de-
vices are becoming faster, work has been done to optimize
the storage stack of VMMs. QEMU used to only support
one I/O thread to serve all VM I/O requests, thus causing
an I/O scalability problems. Later, this was improved by the
virtio-blk-dataplane feature which makes use of a dedicated
I/O thread for each device [27]. But as the NVMe SSDs came

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 12: MySQL OLTP performance using various cache size in PE.

(a) Uncompressed table (page size is 16 KB) (b) Compressed table (pages are com-
pressed from 16 KB to 8 KB)

0

500

1000

1500

2000

3% 5% 10% 20% 30% 50%
Cache size / Data size

Optane NAND

(c) Compressed table (pages are com-
pressed from 16 KB to 4 KB)

Fig. 13: MySQL OLTP performance using various cache size in VE.

D. Table Compression

We discussed the transparent compression for I/O intensive
applications in Section IV. Many database storage engines,
including MySQL InnoDB, have a compression feature [23]
[24]. The MySQL InnoDB supported page-level compression
is called table compression. When it is enabled, InnoDB
will try compressing each page into a smaller page, such
as compressing the 16 KB pages into 4 KB pages. The
compressed pages will be stored in files or cached in the buffer
pool.

Performance boosting caused by compression can only
happen when using slow HDDs, and the purpose of using
table compression in SSDs is only to save storage space.
As displayed in Fig. 12 (b)(c) and Fig. 13 (b)(c), we set
the compressed page size 8 KB and 4 KB, and test the
OLTP performance when cache size increases in PE and VE.
Compared with the uncompressed situation in Fig.12 (a) and
Fig. 13 (a), using table compression feature slightly decreases
the performance of NAND equipped with MySQL, while the
decrease of Optane equipped with MySQL is significant.

Therefore, in MySQL InnoDB, configuring the table com-
pression feature is a trade-off between storage space saving
and the performance for Optane and NAND in the PE. In the
VE, using compression is so costly that Optanes performance
drops to NAND levels.

VI. RELATED WORK

Many research works have evaluated the performance of
emerging SSDs. Xu et al. [25] conducted the first in-depth
performance analysis of NVMe drives, comparing HDDs,
SATA SSDs and NVMe SSDs. Son et al. [15] evaluated the
performance of NVMe SSDs in the context of Linux file sys-
tems and database workloads, making comparisons between
NVMe SSDs and SATA SSDs. Hady et al. [12] introduced
3D XPoint technology and evaluated its performance using
Optane, focusing mainly on the usages of 3D XPoint based
devices. Wu et al. [26] evaluated Optane high-performance
computing (HPC) applications, making comparisons between
Optane and HDDs. We, in this paper, are more interested in
the contrast between NAND flash-based SATA SSDs and 3D
XPoint based Optane SSDs. We think the comparison between
a SATA SSD and a PCIe 3D XPoint SSD is meaningful
because SATA connected SSDs are still widely used today
in many data centers, and the NVMe protocol for the PCIe
interface is becoming increasingly popular.

As cloud computing continues to develop and storage de-
vices are becoming faster, work has been done to optimize
the storage stack of VMMs. QEMU used to only support
one I/O thread to serve all VM I/O requests, thus causing
an I/O scalability problems. Later, this was improved by the
virtio-blk-dataplane feature which makes use of a dedicated
I/O thread for each device [27]. But as the NVMe SSDs came

Host, compression disabled Host, compression enabled

VM, compression disabled VM, compression enabled

Data compression will cause great performance degradation.

(a) Read-only (b) Write-only (c) Mixed read and write

Fig. 8: MySQL OLTP performance using various page size in PE.

(a) Read-only (b) Write-only (c) Mixed read and write

Fig. 9: MySQL OLTP performance using various page size in VE.

because more data can be cached after compression. However,
with high-speed devices, extra latency may be incurred when
decompressing the cached data, which offsets the benefits that
high cache hit rate brings. Second, transparent compression
is traditionally used in systems to reduce the amount of I/O
bandwidth, as I/O latency dominates the total request latency
rather than computing. This hypothesis won’t hold for high-
speed devices, where the proportion of decompression cost
is considerable. Thus, we conclude that when designing or
configuring applications equipped with Optane, data com-
pression is a trade-off between storage space saving and the
performance.

V. TESTS IN DATABASE (MYSQL)

It is evident that a straightforward shift to Optane can
improve the performance of any workload. However, in this
section, we focus on how Optane behaves in real-world
applications with different configurations. We select MySQL
[20], a widely used relational DBMS to perform our tests. The
tests are designed with the intention of previous analysis and
conclusions.

We run the MySQL online transaction processing (OLTP)
tests generated by the benchmark tool Sysbench [22] on
MySQL server version 5.7. We also make some configuring
decisions for better observations: We use the default storage
engine InnoDB with direct I/O enabled , thus the influence of
the OS page cache is eliminated. We by default generate 20
GB data, use 32 MB file cache (named buffer pool in MySQL

InnoDB) and 16 client threads are connected to MySQL.
When doing mixed read&write tests, the ratio of read and
write requests is 7 : 2, which follows the default setting of
Sysbench OLTP benchmarks. Other setups are the same as
in Section III. The performance is measured in transactions
per second (TPS, higher is better).

A. Page Size

As explained in Section IV-B, when switching from NAND
to Optane, the early experience [14] [15] which recommends
smaller page sizes for faster devices is no longer valid. This
conclusion is verified in this experiment.

In MySQL InnoDB, all data is organized by fixed size
chunks called pages, and the pages are also the minimal I/O
units. So we test the OLTP performance as the page size
changes between 4 KB and 64 KB. We show the results in
Fig. 8 and Fig. 9. Optane still does much better than NAND in
all situations, but in the VE, the TPSs of Optane decrease much
more than NAND, which is caused by the large virtualization
overheads. We focus more on the best page size when using
Optane.

TABLE IV: Best MySQL page sizes (KB).

Device Read Mixed R&W Write

Optane 16 8 8
Optane (VE) 16 4 4
NAND 8 4 4
NAND (VE) 8 8 4

(a) Read-only (b) Write-only

0

500

1000

1500

2000

4 8 16 32 64
Page Size (KB)

Optane NAND

(c) Mixed read and write

Fig. 8: MySQL OLTP performance using various page size in PE.

(a) Read-only (b) Write-only (c) Mixed read and write

Fig. 9: MySQL OLTP performance using various page size in VE.

because more data can be cached after compression. However,
with high-speed devices, extra latency may be incurred when
decompressing the cached data, which offsets the benefits that
high cache hit rate brings. Second, transparent compression
is traditionally used in systems to reduce the amount of I/O
bandwidth, as I/O latency dominates the total request latency
rather than computing. This hypothesis won’t hold for high-
speed devices, where the proportion of decompression cost
is considerable. Thus, we conclude that when designing or
configuring applications equipped with Optane, data com-
pression is a trade-off between storage space saving and the
performance.

V. TESTS IN DATABASE (MYSQL)

It is evident that a straightforward shift to Optane can
improve the performance of any workload. However, in this
section, we focus on how Optane behaves in real-world
applications with different configurations. We select MySQL
[20], a widely used relational DBMS to perform our tests. The
tests are designed with the intention of previous analysis and
conclusions.

We run the MySQL online transaction processing (OLTP)
tests generated by the benchmark tool Sysbench [22] on
MySQL server version 5.7. We also make some configuring
decisions for better observations: We use the default storage
engine InnoDB with direct I/O enabled , thus the influence of
the OS page cache is eliminated. We by default generate 20
GB data, use 32 MB file cache (named buffer pool in MySQL

InnoDB) and 16 client threads are connected to MySQL.
When doing mixed read&write tests, the ratio of read and
write requests is 7 : 2, which follows the default setting of
Sysbench OLTP benchmarks. Other setups are the same as
in Section III. The performance is measured in transactions
per second (TPS, higher is better).

A. Page Size

As explained in Section IV-B, when switching from NAND
to Optane, the early experience [14] [15] which recommends
smaller page sizes for faster devices is no longer valid. This
conclusion is verified in this experiment.

In MySQL InnoDB, all data is organized by fixed size
chunks called pages, and the pages are also the minimal I/O
units. So we test the OLTP performance as the page size
changes between 4 KB and 64 KB. We show the results in
Fig. 8 and Fig. 9. Optane still does much better than NAND in
all situations, but in the VE, the TPSs of Optane decrease much
more than NAND, which is caused by the large virtualization
overheads. We focus more on the best page size when using
Optane.

TABLE IV: Best MySQL page sizes (KB).

Device Read Mixed R&W Write

Optane 16 8 8
Optane (VE) 16 4 4
NAND 8 4 4
NAND (VE) 8 8 4

Best for
NAND SSD

Best for
Optane SSD

Tests	in	Database	(MySQL)	--- I/O Granularity

More analysis are needed to chooce the best I/O granularity.

Faster devices benefit from smaller I/O granularity.

Best page sizes

Summary

• We analysis the impacts of storage stacks on Optane’s performance.

• We test the basic metrics of Optane and make comparisons with NAND SSDs.

• We analysis the impacts of Optane on the common storage systems.

• We give suggestions on storage system optimization and verified in MySQL.

Nankai - Baidu Joint Lab, Nankai University: http://nbjl.nankai.edu.cn

Any questions?

Thanks!

Impact on Storage System --- I/O Granularity

 torage
Device

Data
requests

Storage System

fixed size I/O unit

(a) NAND (b) Optane (VE)

(c) RAMDISK (d) Optane (PE)

Fig. 7: Relationship between IOPS and latency.

C. The Performance Curve (between Latency and IOPS)

To better understand the parallel nature of these devices, we
also test the relationship between IOPS and latency of random
read requests and draw latency curves, see Fig. 7.

As the IOPS rate increases, the device experiences a greater
total demand. The average latencies in the traditional device
gradually become worse as the IOPS increases, whereas the
Optane and RAMDISK devices are more resilient to this
demand. Once the IOPS achieves the upper bounds, the
latencies increase rapidly on all devices [10] [11].

As can be observed in Fig. 7 (a), (c) and (d), as the IOPS
rate achieves 95% of the upper bound, the latencies of NAND,
RAMDISK and Optane has increased by 80%, 54% and
25% from its base levels, respectively. This indicates Optane
internally spends less time addressing the data. As a result,
the latency of Optane can stay optimal in high concurrency
workloads. Moreover, when Optane reaches its IOPS bound
(about 580k), the corresponding throughput is about 2.2 GB/s,
which is very close to its transfer bandwidth (2.5 GB/s). On
the contrary, NAND gets a 280 MB throughput when reaching
its upper bound IOPS of 70k, which is much smaller than
its bandwidth (542 MB/s). Thus, we conclude that Optane
has better parallelism and scalability and does better for high
concurrency workloads. Fig. 7 (a), (b) and (c) show the results
of NAND, Optane and RAMDISK in VE. The performance
of NAND and RAMDISK is only a little worse than that in
the PE, while the performance of Optane drops a lot in the
VE. However, the latency of Optane is still more steady as
the IOPS rate increases. When the IOPS rate achieves 95% of
the upper bounds, latency of NAND, Optane and RAMDISK
increase by 158%, 50% and 35% respectively.

Through these measurements, we believe although Optane
costs twice the price per GB than the NAND device, it is still a

more competitive option than NAND for modern data centers.
On the other hand, compared with NAND, the performance of
Optane drops more in VEs. This indicates to make better use
of Optane in cloud data centers, further research on scheduling
and configuring problems should be performed. However, as
mentioned above, as one VM cannot make full use of the
Optane’s parallelism, using one Optane device for multiple
VMs is more appropriate in cloud data centers presently.

IV. IMPACTS ON STORAGE OPTIMIZATIONS

A. File Cache

File caches are used to bridge the performance gap between
storage devices and main memories. Using DRAM as a file
cache is a common optimization in the storage module of I/O
intensive applications. When using a file cache, the average
read I/O latency can be expressed as follows:

Latency = tI/O ⇥ (1�H) + tload ⇥H (1)

where H denotes the cache hit rate, tI/O denotes the average
latency reading from the disk, and tload denotes the time spent
fetching data from the file cache. Generally, the term tload⇥H

can be omitted as tload is very small compared with tI/O. When
using Optane, file caches are still necessary but less important
as its speed (tI/O) is closer to DRAM (tload). In addition, as
Optane is orders of magnitude faster than HDDs, Optane itself
can be used as a cache between HDDs and main memories
[12].

B. I/O Granularity

In I/O intensive applications like DBMSs and key-value
stores, data is generally organized by fixed-length contiguous
chunks, which we call pages. A page is the smallest unit of
data that is fetched or stored.

Traditionally, when using HDDs, the large seek time tseek
dominates the request response time, which results in a large
page size choice. For example, ZFS [13] by default uses 128
KB. And as a common experience, when using faster devices
like SSDs, a smaller page size will be optimal [14] [15].
However, this experience may be wrong when switching the
device from HDDs and low-end SSDs to Optane, and we
aim to explore the underlying reason through sophisticated
mathematical analysis.

An application serves a query request using 3 steps: (1)
interpreting the request to obtain the corresponding pages that
will be transferred, (2) exchanging the pages between applica-
tion layer and underlying software layers of the storage stack,
and (3) exchanging the data between the bottom software layer
and storage devices. We use Tapp, Tstk and Tdev to denote the
time cost corresponding to the above three steps respectively.
Thus, the total time cost for a request can be described by

T = Tapp + Tstk + Tdev. (2)

Note that in the underlying storage stack, data is organized
in pages too. We use da and ds to be the page size in
the application layer and the underlying storage stack layer
respectively. Practically, for the sake of performance, da is a

multiple of ds, indicating that requesting one application page
involves da

ds
underlying storage stack pages. In addition, a total

of d d
da
e application pages will be transferred if the requested

I/O size is d. Thus, we have

Tapp = tappd
d

da
e, (3)

Tstk = tstk
da

ds
d d

da
e, (4)

where tapp and tstk denotes the time cost of a page in the
application layer and the underlying software storage stack.
Let b be the bandwidth of the storage device, and tseek be the
seek time of the storage device, whose value is equal to the
difference between the random latency and sequential latency.
Thus for the third term in (2), we have

Tdev = d d

da
e(tseek +

da

b
). (5)

Applying (3), (4) and (5) into (2), we have the time cost
for a request ri with I/O size di as follows:

T = (tapp + tstk
da

ds
+ tseek +

da

b
)d di
da

e (6)

Applications usually have two types of requests, which can be
called point requests and range requests. Point requests only
involve a data amount much smaller than the page size, and so
d di
da
e will be 1. Range requests involve a large amount of data

that involve many pages, and so d di
da
e is approximately equal to

di
da

. We assume a workload involves N query requests, which
consists of m point requests and n range requests, indexed by
ri (1 i N,N = m + n), whose requested I/O sizes
are represented by D = {d1, d2, . . . , dm, dm+1, . . . , dN}.
Therefore, the total time cost for the given workload can be
expressed by

TD =
mX

i=1

Ti +
NX

i=m+1

Ti

=
mX

i=1

(tapp + tstk
da

ds
+ tseek +

da

b
)

+
NX

i=m+1

(tapp + tstk
da

ds
+ tseek +

da

b
)
di

da
.

(7)

Let d̄ to be the average I/O size of the range requests. Then
we have

TD =m(tapp + tstk
da

ds
+ tseek +

da

b
)

+ n(tapp + tstk
da

ds
+ tseek +

da

b
)
d̄

da

(8)

In (8), we find the derivative of TD of the page size (da)

@TD

@da
= m(

tstk

ds
+

1

b
)�

n(tappd̄+ tseekd̄)

d2a

(9)

and there will be a extreme point of da

da =

s
n(tapp + tseek)d̄

m(tstk/ds + 1/b)
. (10)

Formula 10 gives a way to find the ideal page size, de-
pending on the context of the application. When switching to
the high-end SSDs like Optane, the hardware latency tseek and
1/b is sufficiently small and is comparable with the software
latency. As a result, hardware latency no longer dominates
Formula 10, software factors tapp and tstk (such as application
latency, application workloads, virtualization latency and OS
I/O subsystem latency) will dominate the best choice of page
sizes in equation (10). As software factors are very different
between execution environments and workloads, not only the
experience which tends to choose smaller page size for faster
devices becomes invalid, the best choice will also be much
easier to change. Thus when using Optane, we should not
choose a small page size only based on its low hardware
latency, more workload-related analysis and tests are needed.

C. Storage-orient Computing

Storage-oriented computing tasks like transparent compres-
sion, deduplication and erasure coding, are incorporated into
some I/O intensive applications for space efficiency, high
performance and reliability [16] [17] [18]. These tasks work
in harmony with traditional slower storage devices. However,
when using the new devices like Optane, some of the ad-
vantages may disappear, and they may even lead to poor
performance. We take transparent data compression as an
example.

Data compression has been widely used in I/O intensive
applications such as ZFS [13], NTFS [19] and MySQL [20],
owing to the benefits it provides as follows: (1) less storage
space needed, (2) lower I/O (i.e. disk and network) bandwidth
for data fetching, and (3) higher cache hit rate.

TABLE III: I/O bandwidths and data compression throughputs
(MB/s).

I/O Devices Read Write

NAND 542 412
Optane 2557 2185
Algorithms Decoding Encoding

LZ4 2013 356
Snappy 915 269
zlib deflate 133 23

We list the I/O bandwidth and coding throughput of several
popular lossless compression algorithms in Table III. The
I/O bandwidth is taken from Section III-B, while coding
throughputs are tested by lzbench [21]. The compression
algorithms are tested with the granularity of chunks (128
KB). Traditionally, when using HDDs or NAND devices,
decoding is much faster than I/O reading, which can eliminate
the I/O traffic and benefit the cache capacity, and encoding
will not bottleneck the I/O writing due to the widely used
write buffering. When it comes to Optane, both encoding and
decoding are slower than I/O operations, which indicates that
using data compression may lead to poor performance.

We consider two typical application scenarios where com-
pression may not benefit the system performance when using
Optane: First, compressed data can improve the cache hit rate

multiple of ds, indicating that requesting one application page
involves da

ds
underlying storage stack pages. In addition, a total

of d d
da
e application pages will be transferred if the requested

I/O size is d. Thus, we have

Tapp = tappd
d

da
e, (3)

Tstk = tstk
da

ds
d d

da
e, (4)

where tapp and tstk denotes the time cost of a page in the
application layer and the underlying software storage stack.
Let b be the bandwidth of the storage device, and tseek be the
seek time of the storage device, whose value is equal to the
difference between the random latency and sequential latency.
Thus for the third term in (2), we have

Tdev = d d

da
e(tseek +

da

b
). (5)

Applying (3), (4) and (5) into (2), we have the time cost
for a request ri with I/O size di as follows:

T = (tapp + tstk
da

ds
+ tseek +

da

b
)d di
da

e (6)

Applications usually have two types of requests, which can be
called point requests and range requests. Point requests only
involve a data amount much smaller than the page size, and so
d di
da
e will be 1. Range requests involve a large amount of data

that involve many pages, and so d di
da
e is approximately equal to

di
da

. We assume a workload involves N query requests, which
consists of m point requests and n range requests, indexed by
ri (1 i N,N = m + n), whose requested I/O sizes
are represented by D = {d1, d2, . . . , dm, dm+1, . . . , dN}.
Therefore, the total time cost for the given workload can be
expressed by

TD =
mX

i=1

Ti +
NX

i=m+1

Ti

=
mX

i=1

(tapp + tstk
da

ds
+ tseek +

da

b
)

+
NX

i=m+1

(tapp + tstk
da

ds
+ tseek +

da

b
)
di

da
.

(7)

Let d̄ to be the average I/O size of the range requests. Then
we have

TD =m(tapp + tstk
da

ds
+ tseek +

da

b
)

+ n(tapp + tstk
da

ds
+ tseek +

da

b
)
d̄

da

(8)

In (8), we find the derivative of TD of the page size (da)

@TD

@da
= m(

tstk

ds
+

1

b
)�

n(tappd̄+ tseekd̄)

d2a

(9)

and there will be a extreme point of da

da =

s
n(tapp + tseek)d̄

m(tstk/ds + 1/b)
. (10)

Formula 10 gives a way to find the ideal page size, de-
pending on the context of the application. When switching to
the high-end SSDs like Optane, the hardware latency tseek and
1/b is sufficiently small and is comparable with the software
latency. As a result, hardware latency no longer dominates
Formula 10, software factors tapp and tstk (such as application
latency, application workloads, virtualization latency and OS
I/O subsystem latency) will dominate the best choice of page
sizes in equation (10). As software factors are very different
between execution environments and workloads, not only the
experience which tends to choose smaller page size for faster
devices becomes invalid, the best choice will also be much
easier to change. Thus when using Optane, we should not
choose a small page size only based on its low hardware
latency, more workload-related analysis and tests are needed.

C. Storage-orient Computing

Storage-oriented computing tasks like transparent compres-
sion, deduplication and erasure coding, are incorporated into
some I/O intensive applications for space efficiency, high
performance and reliability [16] [17] [18]. These tasks work
in harmony with traditional slower storage devices. However,
when using the new devices like Optane, some of the ad-
vantages may disappear, and they may even lead to poor
performance. We take transparent data compression as an
example.

Data compression has been widely used in I/O intensive
applications such as ZFS [13], NTFS [19] and MySQL [20],
owing to the benefits it provides as follows: (1) less storage
space needed, (2) lower I/O (i.e. disk and network) bandwidth
for data fetching, and (3) higher cache hit rate.

TABLE III: I/O bandwidths and data compression throughputs
(MB/s).

I/O Devices Read Write

NAND 542 412
Optane 2557 2185
Algorithms Decoding Encoding

LZ4 2013 356
Snappy 915 269
zlib deflate 133 23

We list the I/O bandwidth and coding throughput of several
popular lossless compression algorithms in Table III. The
I/O bandwidth is taken from Section III-B, while coding
throughputs are tested by lzbench [21]. The compression
algorithms are tested with the granularity of chunks (128
KB). Traditionally, when using HDDs or NAND devices,
decoding is much faster than I/O reading, which can eliminate
the I/O traffic and benefit the cache capacity, and encoding
will not bottleneck the I/O writing due to the widely used
write buffering. When it comes to Optane, both encoding and
decoding are slower than I/O operations, which indicates that
using data compression may lead to poor performance.

We consider two typical application scenarios where com-
pression may not benefit the system performance when using
Optane: First, compressed data can improve the cache hit rate

tapp App. latency
tstk OS latency
tseek Hardware I/O latency
b Hardware I/O bandwidth

Average range I/O size
da Best app. I/O Granularity
ds OS I/O Granularity

m Point I/O access number
n Range I/O access number

multiple of ds, indicating that requesting one application page
involves da

ds
underlying storage stack pages. In addition, a total

of d d
da
e application pages will be transferred if the requested

I/O size is d. Thus, we have

Tapp = tappd
d

da
e, (3)

Tstk = tstk
da

ds
d d

da
e, (4)

where tapp and tstk denotes the time cost of a page in the
application layer and the underlying software storage stack.
Let b be the bandwidth of the storage device, and tseek be the
seek time of the storage device, whose value is equal to the
difference between the random latency and sequential latency.
Thus for the third term in (2), we have

Tdev = d d

da
e(tseek +

da

b
). (5)

Applying (3), (4) and (5) into (2), we have the time cost
for a request ri with I/O size di as follows:

T = (tapp + tstk
da

ds
+ tseek +

da

b
)d di
da

e (6)

Applications usually have two types of requests, which can be
called point requests and range requests. Point requests only
involve a data amount much smaller than the page size, and so
d di
da
e will be 1. Range requests involve a large amount of data

that involve many pages, and so d di
da
e is approximately equal to

di
da

. We assume a workload involves N query requests, which
consists of m point requests and n range requests, indexed by
ri (1 i N,N = m + n), whose requested I/O sizes
are represented by D = {d1, d2, . . . , dm, dm+1, . . . , dN}.
Therefore, the total time cost for the given workload can be
expressed by

TD =
mX

i=1

Ti +
NX

i=m+1

Ti

=
mX

i=1

(tapp + tstk
da

ds
+ tseek +

da

b
)

+
NX

i=m+1

(tapp + tstk
da

ds
+ tseek +

da

b
)
di

da
.

(7)

Let d̄ to be the average I/O size of the range requests. Then
we have

TD =m(tapp + tstk
da

ds
+ tseek +

da

b
)

+ n(tapp + tstk
da

ds
+ tseek +

da

b
)
d̄

da

(8)

In (8), we find the derivative of TD of the page size (da)

@TD

@da
= m(

tstk

ds
+

1

b
)�

n(tappd̄+ tseekd̄)

d2a

(9)

and there will be a extreme point of da

da =

s
n(tapp + tseek)d̄

m(tstk/ds + 1/b)
. (10)

Formula 10 gives a way to find the ideal page size, de-
pending on the context of the application. When switching to
the high-end SSDs like Optane, the hardware latency tseek and
1/b is sufficiently small and is comparable with the software
latency. As a result, hardware latency no longer dominates
Formula 10, software factors tapp and tstk (such as application
latency, application workloads, virtualization latency and OS
I/O subsystem latency) will dominate the best choice of page
sizes in equation (10). As software factors are very different
between execution environments and workloads, not only the
experience which tends to choose smaller page size for faster
devices becomes invalid, the best choice will also be much
easier to change. Thus when using Optane, we should not
choose a small page size only based on its low hardware
latency, more workload-related analysis and tests are needed.

C. Storage-orient Computing

Storage-oriented computing tasks like transparent compres-
sion, deduplication and erasure coding, are incorporated into
some I/O intensive applications for space efficiency, high
performance and reliability [16] [17] [18]. These tasks work
in harmony with traditional slower storage devices. However,
when using the new devices like Optane, some of the ad-
vantages may disappear, and they may even lead to poor
performance. We take transparent data compression as an
example.

Data compression has been widely used in I/O intensive
applications such as ZFS [13], NTFS [19] and MySQL [20],
owing to the benefits it provides as follows: (1) less storage
space needed, (2) lower I/O (i.e. disk and network) bandwidth
for data fetching, and (3) higher cache hit rate.

TABLE III: I/O bandwidths and data compression throughputs
(MB/s).

I/O Devices Read Write

NAND 542 412
Optane 2557 2185
Algorithms Decoding Encoding

LZ4 2013 356
Snappy 915 269
zlib deflate 133 23

We list the I/O bandwidth and coding throughput of several
popular lossless compression algorithms in Table III. The
I/O bandwidth is taken from Section III-B, while coding
throughputs are tested by lzbench [21]. The compression
algorithms are tested with the granularity of chunks (128
KB). Traditionally, when using HDDs or NAND devices,
decoding is much faster than I/O reading, which can eliminate
the I/O traffic and benefit the cache capacity, and encoding
will not bottleneck the I/O writing due to the widely used
write buffering. When it comes to Optane, both encoding and
decoding are slower than I/O operations, which indicates that
using data compression may lead to poor performance.

We consider two typical application scenarios where com-
pression may not benefit the system performance when using
Optane: First, compressed data can improve the cache hit rate

